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Self-driven propagation of crack arrays: A stationary two-dimensional model
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Heat or mass transfer across crack surfaces can generate localized shrinkage causing internal stresses which
drive crack propagation. We present experiments suggesting the existence of such a diffusion controlled
directional self-cracking. We formulate a simple two-dimensional stationary model of straight, evenly spaced,
parallel cracks for this process, which takes into account the heat transfer across the crack surfaces and the
interaction of neighboring cracks. The governing equations are solved numerically using finite elements. Crack
spacing and velocity can be predicted utilizing a stability argument combined with simple ideas about the
formation of the crack array. The selected solution is marginally stable with minimal values for crack spacing
and velocity. The results are compared with predictions from a simpler model by Yakobson.
[S1063-651%99)00702-3

PACS numbeps): 46.50+a, 62.20.Mk, 81.40.Np, 44.30v

[. INTRODUCTION array of parallel cracks was investigated [ib,8]. In this
problem, cracks move due to thermal stresses generated by

Crack patterns are frequently encountered in everyday liféghe quenching of a heated ceramic slab. The initially short
as a result of drying up of soil, wood, paint, etc. In someand densely spaced cracks experience an increasing mutual
cases, these patterns are fairly similar, e.g., patterns on olshloading effect as they grow from the surface into the inte-
paintings or stove tiles resemble those emerging afterior of the slab. As a consequence, some of the cracks sud-
guenching a heated ceramic sfdf. The common cause of denly stop growing, which leads to the hierarchical order.
all crack structures is tensile stress due to shrinkage within a The same mechanism is also important for geothermal
limited region of the material. It is of secondary importanceenergy extraction by pumping cold water through warm rock
whether the shrinkage is caused by drying, quenching, reld9,10]. The deeper and wider the generated cracks reach, the
cation processes, chemical reactions, etc. more geothermal heat can be extracted.

The variety of different crack patterns is remarkable. In In the late stage of this process it appears possible that the
directional crack propagation, netlike patteri®sg. 1) and  heat is mainly transferred across the surfaces of secondary
periodic arrays of parallel cracks of equ&ig. 2) or hierar- cracks and not across the surface of the primary fissures.
chically ordered lengthil] are observed. Instead of straight These secondary cracks can move due to the thermal stresses
cracks, periodically or chaotically oscillating cracks are alsathey generate by extracting heat from the rock. For this situ-
possible[2]. This variety results from the interaction be- ation, Weiss(see [11]) suggested that crack propagation
tween the cracks themselves and between the cracks and tbeuld become stationary without differentiation in crack
outer boundaries of the material. length. We shall refer to this process as self-cracking to em-

For simple crack configurations, the generation of crackphasize the temporal evolution involved.
patterns can be modeled using methods from linear-elastic The existence of stationary directional self-cracking due
fracture mechanics and bifurcation theory. In this way, theo shrinkage by chemical decomposition was assumed by
morphological transitions between straight and oscillatoryYakobson[12], who analyzed a one-dimensional model. In
motion for single and multiple cracks, which were observedhis work, the term self-fracturing is used for this process.
in an ingeniously simple experiment by Yuse and SE8lp  Mass transfer across the crack surfaces is treated in a one-
could be explained theoreticall$—8]. The advantage of this dimensional approximation and the interaction between
experiment, in which a heated glass strip is lowered into coldeighboring cracks is ignored. In simple laboratory experi-
water at constant velocity, consists in the controlled, stationments the shrinkage can be easily produced by drying of
ary crack propagation over a wide range of velocities. fluid precursors, monolayers of microspheres or ¢&B—

The transition from a regular to a hierarchically ordered15].
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FIG. 2. Evolution of a regular array of straight parallel cracks
resulting from directional drying of fluid ceramic precursor between
two glass plates: photographs taken after 10, 15, 20 min. The tun-
neling cracks are three dimensional because they do not open at the
bounding glass plates. The crack spacings scale with the precursor
thickness of 0.05 mm.

action of neighboring cracks which determines the lateral
crack spacing.

The paper is organized as follows. Experimental results
are presented in the following section. In Sec. Il we formu-
late a theoretical model for self-cracking. Our formulation
assumes that cooling and thus thermal stresses drive the
cracks, but it is mathematically equivalent to the cases of
chemical decomposition or dryingll]. The numerical
method and results are presented in Sec. IV. Next, crack
spacings and velocities are computed as functions of the ma-
terial properties, heat transfer coefficient, and the tempera-
ture difference between coolant and the fracturing material.

FIG. 1. Evolution of a crack pattern in a drying monolayer of Finally, we compare our findings with the results of the one-
uniformly sized microspheres confined between two glass plateglimensional model by Yakobsdi2] and indicate possible
Drying connected with shrinking of the spheres happens only frondirections of future work.
one open lateral edge and causes directional cracking. The two-
dimensional cracks can open relatively freely because of weak
bonding of the microspheres to the glass surfesee inset The
lower three photographs show three transient stages of cracking
from the boundary of the monolayer. The upper photograph showa0
the late stage of cracking with precursor cracks in front of the
moving crack boundary corresponding to the model of Yakobson.

II. DIRECTIONAL DRYING EXPERIMENTS

In the following we describe two experiments on direc-
nal drying. It must be mentioned that they do not directly
relate to the model to be presented in Sec. Ill. Instead, we
select typical features realized either in one or in the other
experiment in order to obtain a minimal theoretical model.

In the experiments reported below we have observed net- Figure 1 shows the evolution of a two-dimensional crack
like crack patterns as well as arrays of parallel cracks. Thesgattern in a drying monolayer of uniformly sized micro-
experiments have led us to an extended two-dimensionapheres confined between two parallel glass plates glued at
model for such self-cracking processes. It incorporates interthe edges. In contrast to the experiments by Skjeltorp and
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Meakin [14], the water is removed only across one open
lateral edge, which causes directional cracking from this
edge into the material. Furthermore, no additional cracks ap-
pear in the interior of the sample. The polymer micro-
spheres adhere more strongly among each other than to the
glass plates. Therefore the cracks can open relatively freely
also at the glass surfaces, and the monolayer opens up com-
pletely. The drying front slowly moves into the monolayer,
and the cracks grow accordingly. Because of mutual unload-
ing, cracks can temporarily be left behind. Straight crack
propagation is only observed within single grains of the o )
polycrystalline monolayer. They are deflected at grain . FIG. 3. Isotherms fc_)ra_perl(_)dlc array of_pgrallel CI_racks moving
boundariegsee inset Cracks can merge and can even grOWWlth _constant velocity ik dlrectlon_(schematlc illustration Crac_k _
in the direction opposite to the drying front. Resumed growths'.oac'n.g an.d Crf%k length are uniform. The cracks extend indefi-
of formerly stopped cracks is also found. The late stage o?'tely in z direction.
cracking(top) shows precursor cracks in front of the moving P
Hg]c.k boundary corresponding to the model of Yakobson KV2T(X,y)+05T(X,y):O (1)

The evolution of a regular array of parallel cracks is ) ]
shown in Fig. 2. In analogy to the experiments by Allain andin the frame of reference moving with the cracks. The cracks
Limat[13], fluid ceramic precursdichrome-acetate in water are a;sumed to be in mgch_anlc_:al eqwhbnum with respect to
was placed between two glass plates and dried at a tempeﬁé‘-e given 'temperature'dl_strlbutlon._ We consider the case of
ture of 80°C. In the central region, cracks are left behind inPlane strain. The equilibrium conditidi7]
an alternating pattern as previously found in thermal crack-
ing. In contrast to Fig. 1, these cracks do not open at the
glass plates. They represent three-dimensional cracks which =y 9%
are called tunneling cracK46]. ] ] ] )

Before attempting a fully three-dimensional crack model-0!ds fori=x,y in both the fixed and moving frames of
ing under inhomogeneous loading it seems more appropriaf&ference. The stress tensor is given by
to investigate simpler two-dimensional models such as the
one studied in this paper. It contains the additional assump- oi=—
tion of stationary self-cracking. Experiments supporting this . 1-2v
assumption have been undertaken with a different system E ”

(
[15] + 1+V\ uij+ 1_2]}5”':2)(’)/ uy |, (3)

f70’ij

0 2

a(T—To) &

IIl. TWO-DIMENSIONAL MODEL FOR SELF-CRACKING whereu;; = (u;+d;u;)/2 represents the deformation tensor,
A. Basic equations uy,uy denote the displacement fields, amg refers to the
. . ) .. reference state. The other symbel&, v denote thermal ex-
In the formulation of our two-dimensional model of dif- yohgion coefficient, Young’s modulus, and Poisson number.
fusion controlled, dlreqtlpnal self-cre}ckmg we conS|d§r ther- The basic equations must be complemented by two me-
mal stresses as the driving mechanism for crack motion. Wenanical and one thermal boundary condition on the domain

also assume that the cooling of the fracturing material ig,ondaries. Because of symmetry we only need to consider a
mediated by the crack surfaces. The boundary conditions fQg,main of widthp adjacent to a crack. For this domain, we
the temperature distribution in the material therefore dep_enghooSe the coordinate axes such that the crack surface coin-

on the posit.ion of the moving cracks, i._e., the prpblem iN-cides with the negative axis. Symmetry implies that,
volves moving boundaries. In the basic analysis of such:O on the entirex axis and on the ling/=p. The normél

problems one usually considers stationary solutions. This a stresso-... vanishes on the crack surface. The undeformed
ﬁ:g;%g rﬁiﬁﬁg?ﬁgggfgg tOM%r:g(;’:’gr‘ fli)t(eii bgoeunnedrzgllssag falf space ahead of the cracks ensures that the displacement
sumed that the stationar éolutions ré resent asym toticuy yam_shes fory=p and fory=0,. x>0. The stresses. also

y P ymp %mlsh in the half space for—«. Figure 4(top) summarizes

sta\t/ss. id i ¢ | d I Ithe mechanical boundary conditions.
€ consider a unitorm array ol evenly spaced, parallel  q e thermal problem, symmetry requires thaf =0

cracks as shown in Fig. 3, which extend indefinitely in the y=p and fory=0, x>0. We assume that the heat flux

dwepyon. T_he gracks are moving W't.h constant Ve'°°"t.5” density —\d,T on the crack surface is given by Newton’s
positive x direction. The lateral spacing of the cracks s, 2 law of cooling

and we assume that the cracks extend from—o to X
=0. In the half space far aheaq of Fhe c.radlesge positive Ny T(X,y=0)=h[T(x,y=0)—T,]. (4
values ofx), the temperature field is uniform atT,, and

stresses and displacements vanish. The temperature distridua-this equation, the heat conductivityand the heat transfer
tion is governed by the ordinary heat diffusion equation withcoefficienth appear as additional parameters. The tempera-
constant thermal diffusivity, which reads ture T,<T; is maintained outside the material in the interior
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a0, u,=0 Y gF0u,:=0 crack 2
_______________ SR
G=0 g=0
crack crack 1
XV _______
Gy 0, 07 0 Gy= 0.y, =0 FIG. 5. 2-periodic disturbance in crack length.
aT=0 A, 3T-=0
--------------- S crack is of equal length. These perturbations will be referred
ToT to as 2-periodic. This implies that the cracks are constrained
=T to moving along straight lines. The restriction to 2-periodic
perturbations seems justified in the light of the analysis of
C':ac" I ettt crack pattern formation in the quenched ceramic slab. In this
4T (T-T)=0 X 3T=0 problem it turns out that these perturbations are the first to
become unstablEl].
FIG. 4. Mechanicaltop) and thermalbottom) boundary condi- Usually, a stability computation will proceed by a linear-
tions. ization about the basic state. However, the crack motion in

our problem is not described by a differential equation. We
of the crack. It could be regarded as the temperature of thRave not been able to devise an analytical approach for a
coolant. A summary of the thermal boundary conditions isstability calculation.
given in Fig. 4(bottom. In the following, we shall propose the so-called quasi-
The basic equations and boundary conditions in the movstatic stability criterion. We consider this criterion as neces-
ing frame of reference are now completely specified. Withsary and sufficient to ensure stability for the above class of
the material properties, the temperatuiigsT,, crack dis-  perturbations. A formal mathematical derivation of this cri-
tancep, and velocityv given, we can compute the stress andterion remains an open problem.
temperature field in the entire domain. However, crack mo-  For our stability considerations we assume that every sec-
tion is possible only if the elastic energy released by advancend crack starts to move faster whereas the remaining ones
ing the crack can balance the fracture energy needed fafo either reduce their speed or even stop moving. Given the
creation of new material surface. This is expressed by th@ositions of the crack tips as a function of time, we can
condition compute the temperature fields and the energy release rates
for each crack. Instability may occur if the crack propagation
GdA=G.dA, ©) condition acts in favor of a differentiation in crack length,
e., if G=G, for the faster crack an@=<G. for the slower
rack in the course of the fictitious motion. Clearly, this defi-
nition of instability contains all of the unstable motions that
are physically allowed. However, checking for stability still
requires consideration of an infinite variety of fictitious crack
G=G,. ©6) motions. The most unstable of them must be identified to
obtain a workable stability criterion.
Otherwise mechanical equilibrium is not maintained in ad- The faster crack is affected by two mechanisms acting in
vancing the crack. We remark that the energy releaseGate oppos¢e directions. The first effect is a purely geometrical
is a quadratic functional of the stress field. unIoadlng effect. The advanced crack gets a larger sha_re_ of
The crack propagation conditici6) implies thatp andv the .elastlc energy to be released than the crack remaining
cannot be arbitrarily chosen, but must satisfy a functionaP€hind. One could equally say that the advanced crack expe-
relation. Nevertheless, there is still a one-dimensional manili€nces a reduced shielding from its neighbors. This mecha-
fold of stationary solutions. However, since neithgenor v nism represents the driving force of !nstablllty in this system.
are externally controlled quantities, there should be another 1he counteracting thermal effect is due to the fact that the
scalar relation which selects one particular value @hdp. ~ Crack tip is surrounded by comparatively warmer material

As in other moving boundary problems, such a conditiondiving rise to a lower energy release rate than for slower

may be obtained by studying the stability of the stationaryadvancement' This e_ffect will decrease as the relative motion
solution. between the cracks is reduced, whereas the geometrical un-

loading effect is not directly related to the crack speed. As a
result, the most favorable situation for instability appears to
be a quasistatic change in crack length, in which the thermal
In the stationary state, the crack array must be stable witktresses have sufficient time to build up near the tip of the
respect to perturbations. However, the analysis of even thtaster crack.
simplest perturbations is a difficult problem in the frame- We are now in a position to formulate the quasistatic sta-
work of our simple mathematical model. We will therefore bility criterion in mathematical terms. Consider a 2-periodic
consider only a small class of perturbations, namely, perturdisturbance in crack length as shown in Fig. 5. The differ-
bations without directional deviations where every secondence in crack length between cracks 1 and 2 is denoted by

whereGdA denotes the amount of elastic energy released ir:1;
creating new crack surfacéA, and G.dA represents the
fracture energy needed for generatihd. Steady crack mo-
tion is only possible for

B. Stability of a uniform array of cracks
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2a, wherea can be positive or negative. Let us also assume 1.0} & \
that temperature field satisfies the stationary heat equation A § § 5 ]
(1). The energy release rat& of the advanced crack and 0sf “ 5
G, of the delayed crack differ from the val@& in the uni- : ]
form state. Stationarity and symmetry with respect to inter- -
changing the crack numbering and replacinigy —a imply ylpr 1 9
the relationG,(a)=G,(—a). The crack array will be qua- I
sistatically stable i{G; does not increase with, i.e., if —05[ y Ji . i
_4& <0. @ ok N . I
daf o ~1 0 x/p 3
In our problem, we expect that the shielding effect will be 10F s L ]
weak for large crack spacing. The system should then be I ° 5
stable. Instability may occur when the crack spacing is small. [ ;
We further remark that the conditidid) can also be obtained [ 1
by considering the sum of elastic energy and crack surface i ]
energy as a function of the crack tip positions and requiring yipr 7 b)
that this function be minimal foa= 0. i ]
-0.5T ]
IV. NUMERICAL SOLUTION o s
The computation of the stable stationary solutions for our -1.0[.. [ 1.
model comprises the following tasks. Given the material -3 1
properties, the temperature differeritg—T,>0, the veloc-
ity v, and the crack spacingwe can successively compute \ \ ]
the temperature and the stress distribution, from which the : ‘ 2, 2 ]
energy release raté follows. For determination of, the sf A 1 8
computations must be carried out for at least one configura- i ' \ ]
tion with cracks of different length. The number of param- — ' .
eters can be reduced by nondimensionalization. a / 10
A. Temperature distribution 0.5 % d 3
We choosep as length scaleAT=(T,—T;) as the scale i : ~ /O T ]
for the temperature, and shift the origin of the temperature -1.0L

scale toT,. The dimensionless heat equation then reads 0 1
vp FIG. 6. Isotherms T—T;)/AT in the (x,y) plane for different
2 _ . 6. ,y) plane for differen
T+ Ped, T= Pe= — L
v edxT=0, & ®) values of the Peet number Pe and the Biot number Ba) Bi
=0, Pe=0.5, (b) Bi=«,Pe=2, (c) Bi=1,Pe=2.
where Pe denotes thé et number. Similarly, the nontrivial

boundary condition on the crack surface becomes without limit. Conversely, for small Bi the limited heat trans-
port across the interface determines the heat losses. In sum-
OT=BIiT Bi:@ @ mav, increasing Pe with Bi fixed heats up the region in
y ' N between the cracks, whereas increasing Bi with Pe fixed

cools it down. Since the load on the cracks is related to the
where Bi is called the Biot number. The temperature distri-thermal stresses due to cooling, the energy release rate
butions for given Pe and Bi have been computed numericallghould increase with Bi and decrease with Pe.
using the finite element packageRc [18]. Isotherms for
several values of Pe and Bi are shown in Fig. 6. They are in
excellent agreement with an analytical solution obtained by
the Wiener-Hopf methofl9]. By increasing Pe, convective From a simple dimensional argument it follows that the
heat transport becomes more important, and steeper tempegnergy release ra@® in our problem is of the form
ture gradients build up. Correspondingly, the isotherms pen-
etrate deeper into the region between the cracks. 1+v )

The heat loss from the material across the crack surface G=1—,E(aAT)"pg(Pe,Bi. (10)

into the coolant is affected by the Biot number. For large
Biot number, the amount of heat transferred into the coolant
is mainly limited by heat transport inside the material. InThe » dependence is derived in the Appendix. The function
particular, for Bi-o, the heat flux density can increase g(Pe,Bi) is referred to as the normalized energy release rate.

B. Energy release rate
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1.00

in which the temperature drops from unity to zero. Since
thermal stresses opening the crack are generated only in this
narrow layer, the crack spacimpgs no longer relevant for the
size of G. Instead,G should become proportional to the dif-
fusion length x/v, which is the single remaining length
scale. This argument impliegec1/Pe. Our computations

0.75

m
K 050 show thatg=0.81/Pe in this case. We remark that this result
= need not hold for moderate Bi since the limited heat transfer
0.05 on the crack surface reduces the thermal stresses that are
' acting near the crack tip.
Another interesting case is that of BPe<1. The small-
0.00 , . , . , . , ness of Bi allows the temperature field to penetrate far be-
0.0 25 5.0 7.5 10.0 tween the cracks, which can be seen by extrapolating the
1/Pe trend shown in Fig. 6. Due to the low crack velocity, the

convective term can be approximately disregarded. A linear
FIG. 7. Normalized energy release ra(ﬂsoz for the parallel profile with respect tox which is independent of then rep-
crack array of Fig. 3 as a function of the inverseleenumber 1/Pe  rasents a simple approximation to the temperature distribu-
and Biot number Bi. tion between the cracks. The slope of this profile is charac-
terized by a length scalg,> 1/B over which the temperature
Only g(Pe,Bi) has to be computed numerically since thedecays from unity to zero(This relation can be obtained
dependence o6 on the other parameters follows from Eq. from an energy balance for stationary crack motion. It reads
(10). 2pupcAT=L,hAT in dimensional units with the heat ca-
The numerical evaluation C@ requires the solution of pacity pC= )\/K) Because of the mutual un|0ading of the
Egs.(2) and(3) for the plane strain thermal stress problem.cracks, only the temperature drop from unity over a fixed
We have again used thearc finite element code for this |ength of orderp determines the thermal stresses relevant for
purpose. The code evaluat@son the basis of integral theo- the energy release rate. These stresses are of order Bi, which
rems for the energy flux to the crack {ip8]. The results of  jmplies geBi2 [21]. Notice that this result does not contra-

our numerous computations are summarized in Fig. 7, whergict the earlier claim thag—1 for Pe—0. It demonstrates
g is shown as a function of Pe for several fixed values of Bithat the origin in thePe,Bj plane is a singular point.

We will now explain the qualitative behavior gfin certain
limiting cases of large and small Pe and Bi using some o -
simple ideas about the temperature distribution. C. Stability condition
We first consider the case of RPéD and keep Bi finite. The nondimensional form df is similar to that ofG. The
For small Pe, the cracks advance so slowly that heat diffustability condition(7) becomes
sion reduces the temperature to the temperature of the cool-
ant also far ahead of the cracks. Because of the presence of 1+
the large heated half space, the cooled region cannot shrink, F=——E(aAT)?f(Pe,B)<0, (13
which causes homogeneous equibiaxial stress 1-v

EaAT wheref depends on Pe and Bi only. We need therefore only
Go= T, (1) consider the parameters Pe and Bi in the numerics. In order
to compute the derivativ€, we need to know the energy
. release rat&; for the advanced crack, which is ahead of the
Increasing the crack surface WA unloads_ a volume of delayed crack by the distanca 2cf. Fig. 5. The computa-
2pdA per crack. Analogous tf20], the elastic energy den-  ional domain must therefore be extended to the full strip
sity associated with the equibiaxial stress is given by (lgnclosed by two neighboring cracks since symmetry about
—v)ag/E. After unloading with respect to thedirection the  the midplane between the cracks is lost. To comguteve
plane strain constraint in direction leaves a residual stress jntroduce small displacementsof the order of 0.0f and
027~ (1= v)oyg in the unloaded region. The released energycomputeG, (a) in addition toG for the uniform cracks. The
per unit area therefore reads dimensionless quantitfyis obtained by finite differences. As
in the previous computations far andg we have carefully
+u verified our results by using finite element meshes of differ-
= EE(aAT)Zp, (120  ent length and grid spacing.
Figure 8 contains the results of the stability computations.
It shows regions of stable and unstable crack propagation in
which corresponds tg— 1. Since Pe»0 generates the larg- the (Pe,B) plane separated by the stability curve (B¢
est load on the cracks, cannot become larger than unity. computed from the quasistatic stability criteri¢n) at the
Let us now consider the case of large Pe and infinite Bistability limit.
i.e., the temperature on the crack surface is now prescribed, Not surprisingly, it turns out that solutions with small Pe
and convection dominates over heat diffusion. In this caseare unstable and solutions with large Pe are stable. For large
the crack surface is surrounded by a thermal boundary layeRe, the decrease in thermal stresses acting on the advanced

2
zz

2

2p o
G= E{(l_ V)O'(Z)—
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stable

Pe

unstable

10°
Bi

FIG. 8. Regions of stable and unstable crack propagation as
function of Pelet and Biot number. The transition line corresponds
to the marginal stability conditiofi(Pe,Bi)=0.

crack is more pronounced than for small Pe, i.e., the stabi-

lizing thermal effect is stronger for large values of Pe.

V. CRACK SPACING AND VELOCITY

We are now in a position to determine the crack velocity
v and spacing from the material properties, «,v,G,, and
the temperature differend®€T=T,—T;. Using Eq.(10), the
crack propagation conditio6) can be written as

Ge(1-v)

—_— 14
(1+v)E(aAT)? (19

lo
Q(Pe,BD=E. lo

The characteristic length, represents the ratio of specific
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stable

unstable

¢

10°

stable

Vlo/K

107

unstable

2

10
hiy/A

FIG. 9. Regions of stable and unstable crack spaditugs and

fracture energy and maximal thermoelastic energy densityrack velocities(botton) as a function of the normalized external

From Eg.(13) we obtain the second condition
f(Pe,B)<0 (15)

for determination of the two unknowns andp.

loading parameter defined using E44). The dashed lines corre-
spond to slopes-2/3 and 2/3, respectively, in EgEL6). The self-
driven crack array should be marginally stable.

The stability curves shown in Fig. 9 separate regions of Crack propagation should occur close to the stability
stable and unstable crack spacings and crack velocities aslilit. An argument in favor of such a marginal stability can

function of the external loading parametel,/\. This pa-
rameter contains both the temperature differe~@eand the
heat transfer coefficiett. With increasing values dfi, the
cooling becomes more efficient, which allows for smaller
crack spacings and higher velocities.

We shall now derive the asymptotics of the stability
curves for small and largel,/\. FromgoBi? and the finite
limit of the critical Pelet number for Bi-0 it follows that

e

in the limit hly/A—0. Notice that Bi tends to zero with
hly /X although the crack spacimgdiverges in this limit. In
the limit hly /A —< we find thatp andv approach constant
values sinceg and the critical Pelet number become con-
stant as Bi»o. Our numerical computation&f. Fig. 9
show that

hl,

A

Ulo
—
K

p

—
lo

hl,

8 (16)

B—>4.3,
lo

vlg

be given when the initial phase of crack motion is consid-
ered, which precedes the formation of the stationary and uni-
form crack array. Initially, cracks will form on the exterior
material surface. In this state, the heat loss due to the pres-
ence of the cracks is negligible, and the cracks move due to
thermal stresses generated by the external cooling. Experi-
mental and theoretical investigations of this phenomenon
[1,8] demonstrate that the small cracks are initially very
densely spaceddistance is of order of lengthDuring the
nonstationary phase of crack growth, the cracks experience
an increasing unloading effect, which gives rise to a se-
quence of bifurcations in which every second crack is left
behind[1,9,10. As the length of the cracks increases, the
cooling mediated by the internal crack surfaces becomes
dominant, which leads to stationary, self-driven propagation
of the crack array. The final crack spacipgvill be attained
through a sequence of bifurcations which start from a crack
spacing which is much less than the critical vajyegiven

by the stability curve of Fig. $top). According to this sce-
nario, the crack spacing should end up in a range.<p
<2p;.
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Figure 2 demonstrates that marginal stability can be apfor his encouragement to continue this work, and to the
proached also when the density of initial cracks is low. CrackDeutsche Forschungsgemeinschaft for partial financial sup-
branching processes reduce large initial crack spacings duport.
ing the nonstationary phase.

APPENDIX

VI. DISCUSSION AND CONCLUSIONS .
Here we compute the dependence db according to Eq.

The mechanism described in the preceding section selectg0). Throughout this section we use the dimensional equa-
the solution with the minimum crack spacipgand velocity  tions. Consider the decompositim}:uioJr ui1, i=x,y of
among all stable solutions. . _ __the displacement field for the crack. We demand that

This is in contrast to the basic dynamical assumption in_ g gndq4% =0 on the entire crack ling=0 and ony=p

X 1

the model by Yakobsofl2]. It selects the solution with i.e., the crack is absent, and solve E@.and (3) with these
minimal crack lengthL and maximal velocity. This mecha- boundary conditions.

nism is not present in our model based on infinite crack 4 problem foru? is isothermal, and the boundary con-
length (cf. Fig. 2. In [12], a one-dimensional cooling front ditions are as in Fil 4top) exce,t for the stressl —
separates fractured material from the half space containing 9: P b Yy
precursor cracks. The velocity of the precursor cracks de- “yy on the crack surface<0,y=0. Benthem and Koter
creases when the crack length exceeds a certain finite valulzz] find

Above this crack length, the cooling front can speed up by 2 2

additional irregular cracking near the cooling front similar to G= (1=v%)o5p (A1)
Fig. 1. The crack spacingsare assumed to be of the order E

of the crack length.

In spite of these differences to our model, the predictiongor constant tensiom, on the crack surface. By inspection
for the unknown quantities andp are surprisingly similar.  of the Wiener-Hopf procedure outlined j&2] it is obvious
Our relationg16) and(17) agree with those given ifLl2] up  that a nonuniform tension on the crack line will replaggin
to prefactors of order unity. One reason for this lies in thegq. (A1) by an expressiomi[a;y(x)], whereH denotes a

for both small and large heat or mass transfer coefficient. This functional is independent of.

The model by Yakobson could be extended to incorporate \ye shall now show that
the unloading mechanism by assuming an array of parallel
precursor cracks. In such a model, three quantities must be 0 —0)= EaAT/(1— A2
determined, namely, the length spacingp, and velocityv TyyXy=0)=200BaAT/(1=w), (A2)

of the precursor cracks. In addition to the crack propagation .
condition (6), two stability conditions are then needed. OneWhereE(X) depends only on the temperature disribution.

of them must again be based on the maximum velocity as’?gr:r(lgthq.(lo) is established. We introduce the stress func-
sumption with respect to the crack length. The second con- y
dition follows from consideration of stability against differ-
entiation in crack length as in thermal shock, which
corresponds to Eq(13). As a result of such an extended
model we again expect that the velocity increases with
agreement with our present model. oE

For a quantitative comparison between experimental re- V2V2h+ ——V?T=0. (A4)
sults and the theoretical model better experiments are 1=v
ggﬁgr?ed.s;rt]:r{qsst;v?tl#guftlrdséfgzg:;irr]]dt?c)clﬁ?ja\?/igslirlmac:?c?errrtr;lcroTWO conditic_ms ond are requireq on each.poun_dary in.order
achieve stationary propagation of parallel cracks corresponég solve this equation. The first condition s obviously
ing to the present model. Measurements of crack velocitfxayq):o. on bothy=(_),y=p. .

i By taking the Fourier transform of the stress-strain rela-

and spacing could the_n be co_mpared with E6) am_j(l?). tlions (3) with respect tax and use of the first boundary con-
Another approach is possible when the theoretical mode],... ! .
dition, it can be shown that the relation

is extended to three-dimensional tunneling cragkig. 2).
These cracks could again be investigated numerically by Ea
means of a stability analysis analogous to Sec. IV. However, a§<b+ ———d,T=0 (A5)
for tunneling cracks, the spacing scales with the layer thick- 1-v
ness, which was confirmed by experiments with differen

thicknesses of the layer. This is caused by the fact that [Qc’ldﬁ ony=f0 and;lf:hp. derivatives in the inh
tunneling crack unloads its vicinity up to a distance compa- The pre actor of t eT_ erivatives in the inhomogeneous
rable with the layer thickness, boundary condition(A5) is the same as in the differential

equation(A4). The solution of the homogeneous problem for
@ can be assumed zero since stresses are purely due to ther-
mal shrinking. The identical prefactors imply thab

The authors wish to thank H. Balke, W. Pompe, and H.-J=EaAT¢/(1—v), wheree depends only on the tempera-
Weiss for helpful discussions. T. B. is grateful to A. Thessture distribution.

Fb=0y, Fb=0yy, ddd=—0y. (A3

The compatibility condition becomes
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