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Self-driven propagation of crack arrays: A stationary two-dimensional model
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Heat or mass transfer across crack surfaces can generate localized shrinkage causing internal stresses which
drive crack propagation. We present experiments suggesting the existence of such a diffusion controlled
directional self-cracking. We formulate a simple two-dimensional stationary model of straight, evenly spaced,
parallel cracks for this process, which takes into account the heat transfer across the crack surfaces and the
interaction of neighboring cracks. The governing equations are solved numerically using finite elements. Crack
spacing and velocity can be predicted utilizing a stability argument combined with simple ideas about the
formation of the crack array. The selected solution is marginally stable with minimal values for crack spacing
and velocity. The results are compared with predictions from a simpler model by Yakobson.
@S1063-651X~99!00702-3#

PACS number~s!: 46.50.1a, 62.20.Mk, 81.40.Np, 44.30.1v
li
e
o

fte
f
in
ce
el

In

ht
ls
-

d

c
s

th
or
e

o
on

ed

d by
ort
utual
te-
sud-
.
mal
ck
, the

t the
dary
res.
sses

itu-
n

ck
m-

ue
by

In
ss.
one-
en
ri-
of
I. INTRODUCTION

Crack patterns are frequently encountered in everyday
as a result of drying up of soil, wood, paint, etc. In som
cases, these patterns are fairly similar, e.g., patterns on
paintings or stove tiles resemble those emerging a
quenching a heated ceramic slab@1#. The common cause o
all crack structures is tensile stress due to shrinkage with
limited region of the material. It is of secondary importan
whether the shrinkage is caused by drying, quenching, r
cation processes, chemical reactions, etc.

The variety of different crack patterns is remarkable.
directional crack propagation, netlike patterns~Fig. 1! and
periodic arrays of parallel cracks of equal~Fig. 2! or hierar-
chically ordered length@1# are observed. Instead of straig
cracks, periodically or chaotically oscillating cracks are a
possible @2#. This variety results from the interaction be
tween the cracks themselves and between the cracks an
outer boundaries of the material.

For simple crack configurations, the generation of cra
patterns can be modeled using methods from linear-ela
fracture mechanics and bifurcation theory. In this way,
morphological transitions between straight and oscillat
motion for single and multiple cracks, which were observ
in an ingeniously simple experiment by Yuse and Sano@3#,
could be explained theoretically@4–8#. The advantage of this
experiment, in which a heated glass strip is lowered into c
water at constant velocity, consists in the controlled, stati
ary crack propagation over a wide range of velocities.

The transition from a regular to a hierarchically order
PRE 591063-651X/99/59~2!/1408~9!/$15.00
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array of parallel cracks was investigated in@1,8#. In this
problem, cracks move due to thermal stresses generate
the quenching of a heated ceramic slab. The initially sh
and densely spaced cracks experience an increasing m
unloading effect as they grow from the surface into the in
rior of the slab. As a consequence, some of the cracks
denly stop growing, which leads to the hierarchical order

The same mechanism is also important for geother
energy extraction by pumping cold water through warm ro
@9,10#. The deeper and wider the generated cracks reach
more geothermal heat can be extracted.

In the late stage of this process it appears possible tha
heat is mainly transferred across the surfaces of secon
cracks and not across the surface of the primary fissu
These secondary cracks can move due to the thermal stre
they generate by extracting heat from the rock. For this s
ation, Weiss~see @11#! suggested that crack propagatio
could become stationary without differentiation in cra
length. We shall refer to this process as self-cracking to e
phasize the temporal evolution involved.

The existence of stationary directional self-cracking d
to shrinkage by chemical decomposition was assumed
Yakobson@12#, who analyzed a one-dimensional model.
his work, the term self-fracturing is used for this proce
Mass transfer across the crack surfaces is treated in a
dimensional approximation and the interaction betwe
neighboring cracks is ignored. In simple laboratory expe
ments the shrinkage can be easily produced by drying
fluid precursors, monolayers of microspheres or gels@13–
15#.
1408 ©1999 The American Physical Society
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In the experiments reported below we have observed
like crack patterns as well as arrays of parallel cracks. Th
experiments have led us to an extended two-dimensio
model for such self-cracking processes. It incorporates in

FIG. 1. Evolution of a crack pattern in a drying monolayer
uniformly sized microspheres confined between two glass pla
Drying connected with shrinking of the spheres happens only fr
one open lateral edge and causes directional cracking. The
dimensional cracks can open relatively freely because of w
bonding of the microspheres to the glass surface~see inset!. The
lower three photographs show three transient stages of crac
from the boundary of the monolayer. The upper photograph sh
the late stage of cracking with precursor cracks in front of
moving crack boundary corresponding to the model of Yakobs
t-
se
al
r-

action of neighboring cracks which determines the late
crack spacing.

The paper is organized as follows. Experimental resu
are presented in the following section. In Sec. III we form
late a theoretical model for self-cracking. Our formulatio
assumes that cooling and thus thermal stresses drive
cracks, but it is mathematically equivalent to the cases
chemical decomposition or drying@11#. The numerical
method and results are presented in Sec. IV. Next, cr
spacings and velocities are computed as functions of the
terial properties, heat transfer coefficient, and the temp
ture difference between coolant and the fracturing mater
Finally, we compare our findings with the results of the on
dimensional model by Yakobson@12# and indicate possible
directions of future work.

II. DIRECTIONAL DRYING EXPERIMENTS

In the following we describe two experiments on dire
tional drying. It must be mentioned that they do not direc
relate to the model to be presented in Sec. III. Instead,
select typical features realized either in one or in the ot
experiment in order to obtain a minimal theoretical mode

Figure 1 shows the evolution of a two-dimensional cra
pattern in a drying monolayer of uniformly sized micro
spheres confined between two parallel glass plates glue
the edges. In contrast to the experiments by Skjeltorp
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k
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e
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FIG. 2. Evolution of a regular array of straight parallel crac
resulting from directional drying of fluid ceramic precursor betwe
two glass plates: photographs taken after 10, 15, 20 min. The
neling cracks are three dimensional because they do not open a
bounding glass plates. The crack spacings scale with the precu
thickness of 0.05 mm.
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Meakin @14#, the water is removed only across one op
lateral edge, which causes directional cracking from t
edge into the material. Furthermore, no additional cracks
pear in the interior of the sample. The polymer micr
spheres adhere more strongly among each other than to
glass plates. Therefore the cracks can open relatively fr
also at the glass surfaces, and the monolayer opens up
pletely. The drying front slowly moves into the monolaye
and the cracks grow accordingly. Because of mutual unlo
ing, cracks can temporarily be left behind. Straight cra
propagation is only observed within single grains of t
polycrystalline monolayer. They are deflected at gr
boundaries~see inset!. Cracks can merge and can even gro
in the direction opposite to the drying front. Resumed grow
of formerly stopped cracks is also found. The late stage
cracking~top! shows precursor cracks in front of the movin
crack boundary corresponding to the model of Yakobs
@12#.

The evolution of a regular array of parallel cracks
shown in Fig. 2. In analogy to the experiments by Allain a
Limat @13#, fluid ceramic precursor~chrome-acetate in water!
was placed between two glass plates and dried at a temp
ture of 80 °C. In the central region, cracks are left behind
an alternating pattern as previously found in thermal cra
ing. In contrast to Fig. 1, these cracks do not open at
glass plates. They represent three-dimensional cracks w
are called tunneling cracks@16#.

Before attempting a fully three-dimensional crack mod
ing under inhomogeneous loading it seems more approp
to investigate simpler two-dimensional models such as
one studied in this paper. It contains the additional assu
tion of stationary self-cracking. Experiments supporting t
assumption have been undertaken with a different sys
@15#.

III. TWO-DIMENSIONAL MODEL FOR SELF-CRACKING

A. Basic equations

In the formulation of our two-dimensional model of di
fusion controlled, directional self-cracking we consider th
mal stresses as the driving mechanism for crack motion.
also assume that the cooling of the fracturing materia
mediated by the crack surfaces. The boundary conditions
the temperature distribution in the material therefore dep
on the position of the moving cracks, i.e., the problem
volves moving boundaries. In the basic analysis of su
problems one usually considers stationary solutions. This
proach reduces the problem to one with fixed boundaries
moving frame of reference. Moreover, it is generally a
sumed that the stationary solutions represent asympto
states.

We consider a uniform array of evenly spaced, para
cracks as shown in Fig. 3, which extend indefinitely in thz
direction. The cracks are moving with constant velocityv in
positivex direction. The lateral spacing of the cracks is 2p,
and we assume that the cracks extend fromx52` to x
50. In the half space far ahead of the cracks~large positive
values ofx), the temperature fieldT is uniform atT0 , and
stresses and displacements vanish. The temperature dis
tion is governed by the ordinary heat diffusion equation w
constant thermal diffusivityk, which reads
n
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k¹2T~x,y!1v
]

]x
T~x,y!50 ~1!

in the frame of reference moving with the cracks. The cra
are assumed to be in mechanical equilibrium with respec
the given temperature distribution. We consider the case
plane strain. The equilibrium condition@17#

(
j 5x,y

]s i j

]xj
50 ~2!

holds for i 5x,y in both the fixed and moving frames o
reference. The stress tensor is given by

s i j 52
E

122n
a~T2T0!d i j

1
E

11nS ui j 1
n

122n
d i j (

l 5x,y
ull D , ~3!

whereui j 5(] iuj1] jui)/2 represents the deformation tenso
ux ,uy denote the displacement fields, andT0 refers to the
reference state. The other symbolsa,E,n denote thermal ex-
pansion coefficient, Young’s modulus, and Poisson numb

The basic equations must be complemented by two
chanical and one thermal boundary condition on the dom
boundaries. Because of symmetry we only need to consid
domain of widthp adjacent to a crack. For this domain, w
choose the coordinate axes such that the crack surface
cides with the negativex axis. Symmetry implies thatsxy
50 on the entirex axis and on the liney5p. The normal
stresssyy vanishes on the crack surface. The undeform
half space ahead of the cracks ensures that the displace
uy vanishes fory5p and fory50, x.0. The stresses als
vanish in the half space forx→`. Figure 4~top! summarizes
the mechanical boundary conditions.

For the thermal problem, symmetry requires that]yT50
for y5p and for y50, x.0. We assume that the heat flu
density2l]yT on the crack surface is given by Newton
law of cooling

l]yT~x,y50!5h@T~x,y50!2T1#. ~4!

In this equation, the heat conductivityl and the heat transfe
coefficienth appear as additional parameters. The tempe
tureT1,T0 is maintained outside the material in the interi

FIG. 3. Isotherms for a periodic array of parallel cracks movi
with constant velocity inx direction~schematic illustration!. Crack
spacing and crack length are uniform. The cracks extend ind
nitely in z direction.
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of the crack. It could be regarded as the temperature of
coolant. A summary of the thermal boundary conditions
given in Fig. 4~bottom!.

The basic equations and boundary conditions in the m
ing frame of reference are now completely specified. W
the material properties, the temperaturesT0 ,T1 , crack dis-
tancep, and velocityv given, we can compute the stress a
temperature field in the entire domain. However, crack m
tion is possible only if the elastic energy released by adva
ing the crack can balance the fracture energy needed
creation of new material surface. This is expressed by
condition

GdA>GcdA, ~5!

whereGdA denotes the amount of elastic energy release
creating new crack surfacedA, and GcdA represents the
fracture energy needed for generatingdA. Steady crack mo-
tion is only possible for

G5Gc . ~6!

Otherwise mechanical equilibrium is not maintained in a
vancing the crack. We remark that the energy release raG
is a quadratic functional of the stress field.

The crack propagation condition~6! implies thatp andv
cannot be arbitrarily chosen, but must satisfy a functio
relation. Nevertheless, there is still a one-dimensional m
fold of stationary solutions. However, since neitherp nor v
are externally controlled quantities, there should be ano
scalar relation which selects one particular value ofv andp.
As in other moving boundary problems, such a condit
may be obtained by studying the stability of the station
solution.

B. Stability of a uniform array of cracks

In the stationary state, the crack array must be stable w
respect to perturbations. However, the analysis of even
simplest perturbations is a difficult problem in the fram
work of our simple mathematical model. We will therefo
consider only a small class of perturbations, namely, per
bations without directional deviations where every seco

FIG. 4. Mechanical~top! and thermal~bottom! boundary condi-
tions.
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crack is of equal length. These perturbations will be refer
to as 2-periodic. This implies that the cracks are constrai
to moving along straight lines. The restriction to 2-period
perturbations seems justified in the light of the analysis
crack pattern formation in the quenched ceramic slab. In
problem it turns out that these perturbations are the firs
become unstable@1#.

Usually, a stability computation will proceed by a linea
ization about the basic state. However, the crack motion
our problem is not described by a differential equation. W
have not been able to devise an analytical approach fo
stability calculation.

In the following, we shall propose the so-called qua
static stability criterion. We consider this criterion as nec
sary and sufficient to ensure stability for the above class
perturbations. A formal mathematical derivation of this c
terion remains an open problem.

For our stability considerations we assume that every s
ond crack starts to move faster whereas the remaining o
do either reduce their speed or even stop moving. Given
positions of the crack tips as a function of time, we c
compute the temperature fields and the energy release
for each crack. Instability may occur if the crack propagati
condition acts in favor of a differentiation in crack lengt
i.e., if G>Gc for the faster crack andG<Gc for the slower
crack in the course of the fictitious motion. Clearly, this de
nition of instability contains all of the unstable motions th
are physically allowed. However, checking for stability st
requires consideration of an infinite variety of fictitious cra
motions. The most unstable of them must be identified
obtain a workable stability criterion.

The faster crack is affected by two mechanisms acting
opposite directions. The first effect is a purely geometri
unloading effect. The advanced crack gets a larger shar
the elastic energy to be released than the crack remai
behind. One could equally say that the advanced crack e
riences a reduced shielding from its neighbors. This mec
nism represents the driving force of instability in this syste

The counteracting thermal effect is due to the fact that
crack tip is surrounded by comparatively warmer mate
giving rise to a lower energy release rate than for slow
advancement. This effect will decrease as the relative mo
between the cracks is reduced, whereas the geometrica
loading effect is not directly related to the crack speed. A
result, the most favorable situation for instability appears
be a quasistatic change in crack length, in which the ther
stresses have sufficient time to build up near the tip of
faster crack.

We are now in a position to formulate the quasistatic s
bility criterion in mathematical terms. Consider a 2-period
disturbance in crack length as shown in Fig. 5. The diff
ence in crack length between cracks 1 and 2 is denoted

FIG. 5. 2-periodic disturbance in crack length.
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2a, wherea can be positive or negative. Let us also assu
that temperature field satisfies the stationary heat equa
~1!. The energy release ratesG1 of the advanced crack an
G2 of the delayed crack differ from the valueG in the uni-
form state. Stationarity and symmetry with respect to int
changing the crack numbering and replacinga by 2a imply
the relationG1(a)5G2(2a). The crack array will be qua
sistatically stable ifG1 does not increase witha, i.e., if

F5
dG1

da U
a50

<0. ~7!

In our problem, we expect that the shielding effect will
weak for large crack spacing. The system should then
stable. Instability may occur when the crack spacing is sm
We further remark that the condition~7! can also be obtained
by considering the sum of elastic energy and crack surf
energy as a function of the crack tip positions and requir
that this function be minimal fora50.

IV. NUMERICAL SOLUTION

The computation of the stable stationary solutions for
model comprises the following tasks. Given the mate
properties, the temperature differenceT02T1.0, the veloc-
ity v, and the crack spacingp we can successively compu
the temperature and the stress distribution, from which
energy release rateG follows. For determination ofF, the
computations must be carried out for at least one config
tion with cracks of different length. The number of param
eters can be reduced by nondimensionalization.

A. Temperature distribution

We choosep as length scale,DT5(T02T1) as the scale
for the temperature, and shift the origin of the temperat
scale toT1 . The dimensionless heat equation then reads

¹2T1Pe]xT50, Pe5
vp

k
, ~8!

where Pe denotes the Pe´clet number. Similarly, the nontrivia
boundary condition on the crack surface becomes

]yT5Bi T, Bi5
hp

l
, ~9!

where Bi is called the Biot number. The temperature dis
butions for given Pe and Bi have been computed numeric
using the finite element packageMARC @18#. Isotherms for
several values of Pe and Bi are shown in Fig. 6. They ar
excellent agreement with an analytical solution obtained
the Wiener-Hopf method@19#. By increasing Pe, convectiv
heat transport becomes more important, and steeper tem
ture gradients build up. Correspondingly, the isotherms p
etrate deeper into the region between the cracks.

The heat loss from the material across the crack sur
into the coolant is affected by the Biot number. For lar
Biot number, the amount of heat transferred into the coo
is mainly limited by heat transport inside the material.
particular, for Bi→`, the heat flux density can increas
e
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without limit. Conversely, for small Bi the limited heat tran
port across the interface determines the heat losses. In s
mary, increasing Pe with Bi fixed heats up the region
between the cracks, whereas increasing Bi with Pe fi
cools it down. Since the load on the cracks is related to
thermal stresses due to cooling, the energy release
should increase with Bi and decrease with Pe.

B. Energy release rate

From a simple dimensional argument it follows that t
energy release rateG in our problem is of the form

G5
11n

12n
E~aDT!2p g~Pe,Bi!. ~10!

The n dependence is derived in the Appendix. The functi
g(Pe,Bi) is referred to as the normalized energy release r

FIG. 6. Isotherms (T2T1)/DT in the (x,y) plane for different
values of the Pe´clet number Pe and the Biot number Bi:~a! Bi
5`,Pe50.5, ~b! Bi5`,Pe52, ~c! Bi51,Pe52.
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Only g(Pe,Bi) has to be computed numerically since t
dependence ofG on the other parameters follows from E
~10!.

The numerical evaluation ofg requires the solution o
Eqs.~2! and ~3! for the plane strain thermal stress proble
We have again used theMARC finite element code for this
purpose. The code evaluatesG on the basis of integral theo
rems for the energy flux to the crack tip@18#. The results of
our numerous computations are summarized in Fig. 7, wh
g is shown as a function of Pe for several fixed values of
We will now explain the qualitative behavior ofg in certain
limiting cases of large and small Pe and Bi using so
simple ideas about the temperature distribution.

We first consider the case of Pe→0 and keep Bi finite.
For small Pe, the cracks advance so slowly that heat di
sion reduces the temperature to the temperature of the c
ant also far ahead of the cracks. Because of the presen
the large heated half space, the cooled region cannot sh
which causes homogeneous equibiaxial stress

s052
EaDT

12n
. ~11!

Increasing the crack surface bydA unloads a volume of
2pdA per crack. Analogous to@20#, the elastic energy den
sity associated with the equibiaxial stress is given by
2n)s0

2/E. After unloading with respect to they direction the
plane strain constraint inz direction leaves a residual stre
szz5(12n)s0 in the unloaded region. The released ene
per unit area therefore reads

G5
2p

E F ~12n!s0
22

szz
2

2 G5
11n

12n
E~aDT!2p, ~12!

which corresponds tog→1. Since Pe→0 generates the larg
est load on the cracks,g cannot become larger than unity.

Let us now consider the case of large Pe and infinite
i.e., the temperature on the crack surface is now prescri
and convection dominates over heat diffusion. In this ca
the crack surface is surrounded by a thermal boundary la

FIG. 7. Normalized energy release rate~10! for the parallel
crack array of Fig. 3 as a function of the inverse Pe´clet number 1/Pe
and Biot number Bi.
e
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re
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e
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in which the temperature drops from unity to zero. Sin
thermal stresses opening the crack are generated only in
narrow layer, the crack spacingp is no longer relevant for the
size ofG. Instead,G should become proportional to the di
fusion length k/v, which is the single remaining lengt
scale. This argument impliesg}1/Pe. Our computations
show thatg50.81/Pe in this case. We remark that this res
need not hold for moderate Bi since the limited heat trans
on the crack surface reduces the thermal stresses tha
acting near the crack tip.

Another interesting case is that of Bi!Pe!1. The small-
ness of Bi allows the temperature field to penetrate far
tween the cracks, which can be seen by extrapolating
trend shown in Fig. 6. Due to the low crack velocity, th
convective term can be approximately disregarded. A lin
profile with respect tox which is independent ofy then rep-
resents a simple approximation to the temperature distr
tion between the cracks. The slope of this profile is char
terized by a length scaleLh}1/B over which the temperature
decays from unity to zero.~This relation can be obtaine
from an energy balance for stationary crack motion. It rea
2pvrcDT5LhhDT in dimensional units with the heat ca
pacity rc5l/k.) Because of the mutual unloading of th
cracks, only the temperature drop from unity over a fix
length of orderp determines the thermal stresses relevant
the energy release rate. These stresses are of order Bi, w
implies g}Bi2 @21#. Notice that this result does not contra
dict the earlier claim thatg→1 for Pe→0. It demonstrates
that the origin in the~Pe,Bi! plane is a singular point.

C. Stability condition

The nondimensional form ofF is similar to that ofG. The
stability condition~7! becomes

F5
11n

12n
E~aDT!2f ~Pe,Bi!<0, ~13!

wheref depends on Pe and Bi only. We need therefore o
consider the parameters Pe and Bi in the numerics. In o
to compute the derivativeF, we need to know the energ
release rateG1 for the advanced crack, which is ahead of t
delayed crack by the distance 2a ~cf. Fig. 5!. The computa-
tional domain must therefore be extended to the full st
enclosed by two neighboring cracks since symmetry ab
the midplane between the cracks is lost. To computeF, we
introduce small displacementsa of the order of 0.01p and
computeG1(a) in addition toG for the uniform cracks. The
dimensionless quantityf is obtained by finite differences. A
in the previous computations forT andg we have carefully
verified our results by using finite element meshes of diff
ent length and grid spacing.

Figure 8 contains the results of the stability computatio
It shows regions of stable and unstable crack propagatio
the ~Pe,Bi! plane separated by the stability curve Pe~Bi!
computed from the quasistatic stability criterion~7! at the
stability limit.

Not surprisingly, it turns out that solutions with small P
are unstable and solutions with large Pe are stable. For l
Pe, the decrease in thermal stresses acting on the adva
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crack is more pronounced than for small Pe, i.e., the st
lizing thermal effect is stronger for large values of Pe.

V. CRACK SPACING AND VELOCITY

We are now in a position to determine the crack veloc
v and spacingp from the material propertiesE, a,n,Gc , and
the temperature differenceDT5T02T1 . Using Eq.~10!, the
crack propagation condition~6! can be written as

g~Pe,Bi!5
l 0

p
, l 05

Gc~12n!

~11n!E~aDT!2
. ~14!

The characteristic lengthl 0 represents the ratio of specifi
fracture energy and maximal thermoelastic energy dens
From Eq.~13! we obtain the second condition

f ~Pe,Bi!<0 ~15!

for determination of the two unknownsv andp.
The stability curves shown in Fig. 9 separate regions

stable and unstable crack spacings and crack velocities
function of the external loading parameterhl0 /l. This pa-
rameter contains both the temperature differenceDT and the
heat transfer coefficienth. With increasing values ofh, the
cooling becomes more efficient, which allows for smal
crack spacings and higher velocities.

We shall now derive the asymptotics of the stabil
curves for small and largehl0 /l. Fromg}Bi2 and the finite
limit of the critical Péclet number for Bi→0 it follows that

p

l 0
}S hl0

l D 22/3

,
v l 0

k
}S hl0

l D 2/3

, ~16!

in the limit hl0 /l→0. Notice that Bi tends to zero with
hl0 /l although the crack spacingp diverges in this limit. In
the limit hl0 /l→` we find thatp andv approach constan
values sinceg and the critical Pe´clet number become con
stant as Bi→`. Our numerical computations~cf. Fig. 9!
show that

p

l 0
→4.3,

v l 0

k
→0.81. ~17!

FIG. 8. Regions of stable and unstable crack propagation
function of Péclet and Biot number. The transition line correspon
to the marginal stability conditionf (Pe,Bi)50.
i-

y.

f
s a

r

Crack propagation should occur close to the stabi
limit. An argument in favor of such a marginal stability ca
be given when the initial phase of crack motion is cons
ered, which precedes the formation of the stationary and
form crack array. Initially, cracks will form on the exterio
material surface. In this state, the heat loss due to the p
ence of the cracks is negligible, and the cracks move du
thermal stresses generated by the external cooling. Exp
mental and theoretical investigations of this phenomen
@1,8# demonstrate that the small cracks are initially ve
densely spaced~distance is of order of length!. During the
nonstationary phase of crack growth, the cracks experie
an increasing unloading effect, which gives rise to a
quence of bifurcations in which every second crack is l
behind @1,9,10#. As the length of the cracks increases, t
cooling mediated by the internal crack surfaces becom
dominant, which leads to stationary, self-driven propagat
of the crack array. The final crack spacingp will be attained
through a sequence of bifurcations which start from a cr
spacing which is much less than the critical valuepc given
by the stability curve of Fig. 9~top!. According to this sce-
nario, the crack spacingp should end up in a rangepc,p
,2pc .

a

FIG. 9. Regions of stable and unstable crack spacings~top! and
crack velocities~bottom! as a function of the normalized extern
loading parameter defined using Eq.~14!. The dashed lines corre
spond to slopes22/3 and 2/3, respectively, in Eqs.~16!. The self-
driven crack array should be marginally stable.
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Figure 2 demonstrates that marginal stability can be
proached also when the density of initial cracks is low. Cra
branching processes reduce large initial crack spacings
ing the nonstationary phase.

VI. DISCUSSION AND CONCLUSIONS

The mechanism described in the preceding section se
the solution with the minimum crack spacingp and velocity
among all stable solutions.

This is in contrast to the basic dynamical assumption
the model by Yakobson@12#. It selects the solution with
minimal crack lengthL and maximal velocity. This mecha
nism is not present in our model based on infinite cra
length ~cf. Fig. 2!. In @12#, a one-dimensional cooling fron
separates fractured material from the half space contai
precursor cracks. The velocity of the precursor cracks
creases when the crack length exceeds a certain finite v
Above this crack length, the cooling front can speed up
additional irregular cracking near the cooling front similar
Fig. 1. The crack spacingsp are assumed to be of the ord
of the crack length.

In spite of these differences to our model, the predictio
for the unknown quantitiesv andp are surprisingly similar.
Our relations~16! and~17! agree with those given in@12# up
to prefactors of order unity. One reason for this lies in t
fact that both selection criteria require finite Pe´clet numbers
for both small and large heat or mass transfer coefficien

The model by Yakobson could be extended to incorpor
the unloading mechanism by assuming an array of para
precursor cracks. In such a model, three quantities mus
determined, namely, the lengthL, spacingp, and velocityv
of the precursor cracks. In addition to the crack propaga
condition ~6!, two stability conditions are then needed. O
of them must again be based on the maximum velocity
sumption with respect to the crack length. The second c
dition follows from consideration of stability against diffe
entiation in crack length as in thermal shock, whi
corresponds to Eq.~13!. As a result of such an extende
model we again expect that the velocity increases withp in
agreement with our present model.

For a quantitative comparison between experimental
sults and the theoretical model better experiments
needed. They should first be conducted with larger mic
sphere systems without defects~grain boundaries! in order to
achieve stationary propagation of parallel cracks correspo
ing to the present model. Measurements of crack velo
and spacing could then be compared with Eqs.~16! and~17!.

Another approach is possible when the theoretical mo
is extended to three-dimensional tunneling cracks~Fig. 2!.
These cracks could again be investigated numerically
means of a stability analysis analogous to Sec. IV. Howe
for tunneling cracks, the spacing scales with the layer thi
ness, which was confirmed by experiments with differe
thicknesses of the layer. This is caused by the fact tha
tunneling crack unloads its vicinity up to a distance com
rable with the layer thickness.
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APPENDIX

Here we compute then dependence ofG according to Eq.
~10!. Throughout this section we use the dimensional eq
tions. Consider the decompositionui5ui

01ui
1 , i 5x,y of

the displacement field for the crack. We demand thatuy
0

50 andsxy
0 50 on the entire crack liney50 and ony5p,

i.e., the crack is absent, and solve Eqs.~2! and~3! with these
boundary conditions.

The problem forui
1 is isothermal, and the boundary con

ditions are as in Fig. 4~top! except for the stresssyy
1 5

2syy
0 on the crack surfacex,0,y50. Benthem and Koiter

@22# find

G5
~12n2!s0

2p

E
~A1!

for constant tensions0 on the crack surface. By inspectio
of the Wiener-Hopf procedure outlined in@22# it is obvious
that a nonuniform tension on the crack line will replaces0 in
Eq. ~A1! by an expressionH@syy

1 (x)#, whereH denotes a
certain linear functional of the stress distributionsyy

1 (x).
This functional is independent ofn.

We shall now show that

syy
0 ~x,y50!5S~x!EaDT/~12n!, ~A2!

where S(x) depends only on the temperature distributio
By that, Eq.~10! is established. We introduce the stress fun
tion F by

]y
2F5sxx , ]x

2F5syy , ]x]yF52sxy . ~A3!

The compatibility condition becomes

¹2¹2F1
aE

12n
¹2T50. ~A4!

Two conditions onF are required on each boundary in ord
to solve this equation. The first condition is obvious
]x]yF50 on bothy50,y5p.

By taking the Fourier transform of the stress-strain re
tions ~3! with respect tox and use of the first boundary con
dition, it can be shown that the relation

]y
3F1

Ea

12n
]yT50 ~A5!

holds ony50 andy5p.
The prefactor of theT derivatives in the inhomogeneou

boundary condition~A5! is the same as in the differentia
equation~A4!. The solution of the homogeneous problem f
F can be assumed zero since stresses are purely due to
mal shrinking. The identical prefactors imply thatF
5EaDTw/(12n), wherew depends only on the tempera
ture distribution.
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